Skip to main content
Log in

Microbial growth and nitrogen retention in litter of Phragmites australis compared to Typha angustifolia

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

In tidal marshes of the northeast US, replacement of native cattail (Typha angustifolia) by the common reed (Phragmites australis) is widespread, and reed is often the target of removal efforts. Reed sequesters nearly twice the amount of nitrogen per unit marsh area in living aboveground tissue compared to cattail. Microbial decay processes immobilize additional nitrogen or return this organic nitrogen to the pool of inorganic nitrogen. We compared microbial growth during decay of standing and fallen litter of cattail and reed. Shoots of both plants were collected at the time of peak live biomass and then periodically throughout litter decomposition. Litter was analyzed for mass loss, nitrogen content, and biomass and production of fungi and bacteria. There were statistically significant but small differences in litter-associated microbial biomass and production between these two plants. Microbial production on both litter types was dominated by fungi, accounting for >99% of the total. Living fungal biomass (estimated from ergosterol) associated with reed and cattail litter averaged 6.1 and 8.2 mg fungal C/g litter dry mass, respectively, and fungal nitrogen accounted for roughly 25% of the total nitrogen associated with litter. Detrital nitrogen standing stocks/m2 were greater for reed than cattail throughout the first 2.5 years of decay. Therefore, the ability of reed litter to support decomposer growth is only somewhat lower and nitrogen retention is greater than for one of the plants it replaces. These differences are probably insufficient to argue for aggressive control of reed in tidal wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Amsberry, L., M. Baker, P. Ewanchuk, and M. Bertness. 2000. Clonal integration and the expansion of Phragmites australis. Ecological Applications 10:1110–1118.

    Article  Google Scholar 

  • Angradi, T. R., S. M. Hagan, and K. W. Able. 2001. Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh: Phragmites vs. Spartina. Wetlands 21:75–92.

    Article  Google Scholar 

  • Benoit, L. K. and R. A. Askins. 1999. Impact of the spread of Phragmites on the distribution of birds in Connecticut tidal marshes. Wetlands 19:194–208.

    Article  Google Scholar 

  • Brinson, M. M., A. E. Lugo, and S. Brown. 1981. Primary productivity, decomposition and consumer activityin freshwater wetlands. Annual Review of Ecology and Systematics 12:123–161.

    Article  Google Scholar 

  • Chambers, R. M., L. A. Meyerson, and K. Saltonstall. 1999. Expansion of Phragmites australis into tidal wetlands of North America. Aquatic Botany 64:261–273.

    Article  Google Scholar 

  • Chen, R. and R. R. Twilley. 1999. A simulation model of organic matter and nutrient accumulation in mangrove wetland soils. Biogeochemistry 44:93–118.

    Google Scholar 

  • Craft, C. B. and C. J. Richardson. 1993. Peat accretion and N,P, and organic C accumulation in nutrient-enriched and unenriched everglades peatlands. Ecological Applications 3:446–458.

    Article  Google Scholar 

  • Drizo, A., C. A. Frost, J. Grace, and K. A. Smith. 2001. Phosphate and ammonium distribution in a pilot-scale constructed wetland with horizontal subsurface flow using shale as a substrate. Water Research 34:2483–2490.

    Article  Google Scholar 

  • Ducklow, H. 2000. Bacterial production and biomass in the oceans. p. 85–120. In D. L. Kirchman (ed.) Microbial Ecology of the Oceans. Wiley-Liss, Inc., New York, NY, USA.

    Google Scholar 

  • Enriquez, S., C. M. Duarte, and K. Sand-Jensen. 1993. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94:457–471.

    Article  Google Scholar 

  • Fell, P. E., S. P. Weissbauch, S. P. Jones, D. A. Fallon, J. A. Zeppieri, J. A. Fason, E. K. Lennon, K. A. Newburry, and L. K. Reddington. 1998. Does invasion of oligohaline tidal marshes by reed grass, Phragmites australis, affect the availability of prey resources for the mummichog, Fundulus heteroclitus L.? Journal of Experimental Marine Biology and Ecology 222:59–79.

    Article  Google Scholar 

  • Findlay, S., J. Meyer, and R. Edwards. 1984. Measuring bacterial production via rate of incorporation of 3H-thymidine into DNA. Journal of Microbiological Methods 2:57–72.

    Article  CAS  Google Scholar 

  • Findlay, S., K. Howe, and K. Austin. 1990. Comparison of detritus dynamics in two tidal freshwater wetlands. Ecology 71:288–295.

    Article  Google Scholar 

  • Findlay, S., J. Tank, S. Dye, H. M. Valett, P. J. Mulholland, W. H. McDowell, S. L. Johnson, S. K. Hamilton, J. Edmonds, W. K. Dodds, and W. B. Bowden. 2002. A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams. Microbial Ecology 43:55–66.

    Article  CAS  PubMed  Google Scholar 

  • Gessner, M. O. and S. Y. Newell. 2002. Biomass, growth rate and production of filamentous fungi in plant litter. p. 390–408. In C. J. Hurst, M. McInerney, L. D. Stetzenback, G. Knudsen, and M. Walter (eds.) Manual of Environmental Microbiology 2nd ed. American Society for Microbiology, Washington, DC, USA.

    Google Scholar 

  • Groffman, P. M. 1994. Denitrification in freshwater wetlands. Current Topics in Wetland Biogeochemistry 1:15–35.

    Google Scholar 

  • Johnston, C. A., N. E. Detenbeck, and G. J. Niemi. 1990. The cumulative effect of wetlands on stream water quality and quantity: A landscape approach. Biogeochemistry 10:105–142.

    Article  Google Scholar 

  • Jordan, T. E., D. F. Whigham, and D. L. Correll. 1989. The role of litter in nutrient cycling in a brackish tidal marsh. Ecology 70: 1906–1915.

    Article  Google Scholar 

  • Kelly, V. R., G. M. Lovett, K. C. Weathers, and G. E. Likens. 2002. Trends in atmospheric concentration and deposition compared to regional and local pollutant emissions at a rural site in southeastern New York, USA. Atmospheric Environment 36:1569–1575.

    Article  CAS  Google Scholar 

  • Kominkova, D., K. A. Kuehn, N. Busing, and D. Steiner. 2000. Microbial biomass, growth, and respiration associated with submerged litter of Phragmites australis decomposing in a littoral reed stand of a large lake. Aquatic Microbial Ecology 22:271–282.

    Article  Google Scholar 

  • Kuehn, K. A. and K. Suberkropp. 1998. Decomposition of standing litter of the freshwater macrophyte Juncus effusus. Freshwater Biology 40:717–727.

    Article  Google Scholar 

  • Kuehn, K. A., M. O. Gessner, R. G. Wetzel, and K. Suberkropp. 1999. Decomposition and CO2 evolution from standing litter of the emergent macrophyte Erianthus giganteus. Microbial Ecology 38:50–57.

    Article  CAS  PubMed  Google Scholar 

  • Kuehn, K. A., M. J. Lemke, K. Suberkropp, and R. G. Wetzel. 2000. Microbial biomass and production associated with decaying leaf litter of the emergent macrophyte Juncus effusus. Limnology and Oceanography 45:862–870.

    CAS  Google Scholar 

  • Lampman, G., N. F. Caraco, and J. J. Cole. 1999. Spatial and temporal patterns of nutrient concentration and export in the tidal Hudson River. Estuaries 22:285–296.

    Article  CAS  Google Scholar 

  • Mann, K. H. 1988. Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnology and Oceanography 33:910–930.

    Article  CAS  Google Scholar 

  • Marks, M., B. Lapin, and J. Randall. 1994. Phragmites australis (P. communis): Threats, management, and monitoring. Natural Areas Journal 14:285–294.

    Google Scholar 

  • Merrill, J. Z. and J. C. Cornwell. 2000. The role of oligohaline marshes in estuarine nutrient cycling. p. 425–441. In M. P. Weinstein and D. A. Kreeger (eds.) Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Meyerson, L., K. Saltonstall, L. Windham, E. Kiviat, and S. Findlay. 2000. A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetlands Ecology and Management 8:89–103.

    Article  CAS  Google Scholar 

  • Mitsch, W. J. and J. G. Gosselink. 1993. Wetlands, second edition. Van Nostrand Reinhold. New York, NY, USA.

    Google Scholar 

  • Newell, S. Y. 2001. Multiyear patterns of fungal biomass dynamics and productivity within naturally decaying smooth cordgrass shoots. Limnology and Oceanography 46:573–583.

    Article  Google Scholar 

  • Newell, S. Y., T. L. Arsuffi, and R. D. Fallon. 1988. Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography. Applied and Environmental Microbiology 54:1876–1879.

    CAS  PubMed  Google Scholar 

  • Newell, S. Y., M. A. Moran, R. Wicks, and R. E. Hodson. 1995. Productivities of microbial decomposers during early stages of decomposition of leaves of a freshwater sedge. Freshwater Biology 34:135–148.

    Article  Google Scholar 

  • Newell, S. Y., P. F. Arsuffi, and L. A. Palm. 1996. Misting and nitrogen fertilization of shoots of a saltmarsh grass: Effects upon fungal decay of leaf blades. Oecologia 108:495–502.

    Article  Google Scholar 

  • Newell, S. Y. and L. A. Palm. 1998. Responses of bacterial assemblages on standing-decaying blades of smooth cordgrass to additions of water and nitrogen. International Review of Hydrobiology 83:115–122.

    Article  CAS  Google Scholar 

  • Newell, S. Y. and D. Porter. 2000. Microbial secondary production from saltmarsh-grass shoots, and its known and potential fates. p. 159–185. In M. P. Weinstein and D. A. Kreeger (eds.) Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Odum, W. E. 1988. Comparative ecology of tidal freshwater and salt marshes. Annual Review Ecology Systematics 19:147–176.

    Article  Google Scholar 

  • Orson, R. A., R. S. Warren, and W. A. Niering. 1987. Development of a tidal marsh in a New England river valley. Estuaries 10:20–27.

    Article  Google Scholar 

  • Pasternack, G. B. and G. S. Brush. 1998. Sedimentation cycles in a river-mouth tidal freshwater marsh. Estuaries 21:407–415.

    Article  Google Scholar 

  • Silliman, B. R. and J. C. Zieman. 2001. Top-down control of Spartina alterniflora production by periwinkle grazing in a Virginia salt marsh. Ecology 82:2830–2845.

    Google Scholar 

  • Sinsabaugh, R. L. and S. Findlay. 1995. Microbial production, enzyme activity and carbon turnover in surface sediments of the Hudson River Estuary. Microbial Ecology 30:127–141.

    Article  CAS  Google Scholar 

  • Templer, P., S. Findlay, and C. Wigand. 1998. Sediment chemistry associated with native and non-native emergent macrophytes of a Hudson River marsh ecosystem. Wetlands 18:70–78.

    Google Scholar 

  • Warren, R. S., P. E. Fell, J. L. Grimsby, E. L. Buck, G. C. Rilling, and R. A. Fertik. 2001. Rates, patterns, and impacts of Phragmites australis expansion and effects of experimental Phragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River. Estuaries 24:90–107.

    Article  Google Scholar 

  • Webster, J. R. and E. F. Benfield. 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review Ecology Systematics 17:567–594.

    Article  Google Scholar 

  • Wetzel, R. G. and G. E. Likens. 1991. Limnological Analyses, second edition. Springer-Verlag, New York, NY, USA.

    Google Scholar 

  • Weyers, H. S. and K. Suberkropp. 1996. Fungal and bacterial production during the breakdown of yellow poplar leaves in 2 streams. Journal of the North American Benthological Society 15: 408–420.

    Article  Google Scholar 

  • Windham, L. 2001. Comparison of biomass production and decomposition between Phragmites australis (common reed) and Spartina patens (salt hay grass) in brackish tidal marshes of New Jersey, USA. Wetlands 21:179–188.

    Article  Google Scholar 

  • Windham, L. and R. G. Lathrop. 1999. Effects of Phragmites australis (common reed) invasion on aboveground biomass and soil properties in a brackish tidal marsh of the Mullica River, New Jersey. Estuaries 22:927–935.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart E. G. Findlay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Findlay, S.E.G., Dye, S. & Kuehn, K.A. Microbial growth and nitrogen retention in litter of Phragmites australis compared to Typha angustifolia . Wetlands 22, 616–625 (2002). https://doi.org/10.1672/0277-5212(2002)022[0616:MGANRI]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2002)022[0616:MGANRI]2.0.CO;2

Key Words

Navigation